Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent innovations in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs) have unlocked a viable path to creating in vitro cardiac models. Currently, hiPSC-derived cardiomyocytes (hiPSC-CMs) remain immature, leading many in the field to explore approaches to enhance cell and tissue maturation. Here, we systematically analyzed 300 studies using hiPSC-CM models to determine common fabrication, maturation and assessment techniques used to evaluate cardiomyocyte functionality and maturity and compiled the data into an open-access database. Based on this analysis, we present the diversity of, and current trends in, in vitro models and highlight the most common and promising practices for functional assessments. We further analyzed outputs spanning structural maturity, contractile function, electrophysiology and gene expression and note field-wide improvements over time. Finally, we discuss opportunities to collectively pursue the shared goal of hiPSC-CM model development, maturation and assessment that we believe are critical for engineering mature cardiac tissue.more » « lessFree, publicly-accessible full text available November 8, 2025
-
Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues’ mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue ‘The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity’.more » « less
-
Abstract The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM‐mimetic synthetic, fiber matrices, and induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs), enabling real‐time contractility readouts, in‐depth structural assessment, and tissue‐specific computational modeling. They found that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC‐CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell‐ECM interactions in myofibril assembly, myofibril maturation, and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC‐CM tissue models with controllable architecture and mechanics can elucidate mechanisms of tissue maturation and disease.more » « less
An official website of the United States government
